

1 ©2017 Software AG. All rights reserved.

SOFTWARE AG PRODUCTS
TUNING GUIDELINES FOR
PERFORMANCE

Performance Team

Software AG products Tuning Guidelines for Performance 6/7/2017

2 ©2015 Software AG. All rights reserved.

TABLE OF CONTENTS

1. Introduction 4

2. Disclaimer 5

3. Integration Server 6

3.1. Primary optimization 6

3.1.1. Flow service optimization 6

3.2. Tuning guidelines in Integration Server 7

3.2.1. Logging 7

3.2.2. Thread pool 7

3.2.3. Heap size 8

3.2.4. JDBC pools 9

3.2.4.1. MaxPooledStatements 9

3.2.4.2. JDBC connections and login timeout 9

3.2.5. Adapters 9

3.2.5.1. JDBC adapter 9

3.2.5.2. MQ adapter 10

3.2.5.3. SAP adapter 11

4. Process Engine 12

4.1. Cost of process step 12

4.2. Distributed database approach 12

4.3. Effect of correlation 13

4.4. Impact of joins 13

4.5. Effect of in-line sub process 13

5. Trading Networks 14

5.1. Trading Networks performance guidelines 14

5.2. Activity log properties 14

5.3. Archive properties 15

5.4. Large document handling properties 15

5.5. Other properties 15

5.6. Database queries properties 15

6. Java Messaging Server (JMS) 16

6.1. Transactions and Re-delivery 17

6.1.1. Local or XA Transaction 17

6.1.2. Multiple JMS Connection Alias 17

Software AG products Tuning Guidelines for Performance 6/7/2017

3 ©2017 Software AG. All rights reserved.

6.1.3. Trigger Concurrency 17

6.1.4. Connections to JMS provider 18

6.1.5. Solution design decision-Processing overhead or Latency 18

6.2. Limiting factors in JMS scenarios 19

6.3. Tuning Considerations 19

7. My webMethods Server (MWS) 22

7.1. General performance Notes 22

7.2. DB query roles 22

7.3. MWS DB 23

7.4. Web XML 23

7.5. Glue 23

7.6. Jetty 24

7.7. SAML 25

7.8. Web service and task engine 26

7.9. LDAP 26

7.10. Task deletion 26

7.11. Other Parameters 26

7.11.1. Search Tasks 26

7.11.2. Update Threads 27

7.11.3. Processing Threads 27

7.11.4. In-Memory event handling 27

8. Universal Messaging and Network Infrastructure 28

8.1. Universal Messaging and SSL 28

Software AG products Tuning Guidelines for Performance 6/7/2017

4 ©2017 Software AG. All rights reserved.

1. Introduction

This paper presents guidelines for various webMethods and IoT analytics product’s configurations which

could be followed to exercise optimum and acceptable performance SLAs when working with webMethods

products.

Integration Server:

Integration Server is the core application server of webMethods and is used in enterprise level integrations.

Adopting best practices when building the solution helps to avoid redundancy and does not limit the

solutions to scale on ever growing business needs.

JMS:

Integration Server can connect to webMethods Broker, Universal Messaging or other JMS Providers using

JMS Connection Aliases, JMS Triggers and a number of built-in JMS services for sending and receiving

messages.

The documents does not factors in the general JMS provider specific attributes like persistent messages

non-persistent impact on throughput. Trivially, persistent throughput messages will be limited by the

storage speed. While throughput of non-persistent messages will be limited by memory capacity and

network bandwidth. Further, JMS provider specific attributes which would impact performance is beyond

the scope of this document.

MWS:

My webMethods Server (MWS) provides a user interface to webMethods products such as Optimize,

Broker, Process Monitor, and Task Engine. MWS is also a container for Task Engine servlets and custom

portlets; it uses an embedded Jetty server as its servlets environment and is capable of very high

performance.

MWS instance runs as a multi-threaded process within a single Java Virtual Machine (JVM) which relies on

operating system resources.

The users communicate with MWS through a web (HTTP) interface, whereas MWS accesses back end

resources through TCP/IP sockets. MWS also requires the services of a database in which state and

configuration information is stored. MWS communicates with other applications, such as Optimize and

Integration Server, through web services over HTTP.

Universal Messaging (UM)

This document provides basic guidelines for using Universal Messaging-Integration Server publish

scenarios in a production environment.

Software AG products Tuning Guidelines for Performance 6/7/2017

5 ©2017 Software AG. All rights reserved.

2. Disclaimer

This document lists just the general guidelines which may help in improving the performance of a typical

webMethods installation. These guidelines may degrade performance in different environments and use

cases. These guidelines can be used on trial and error basis only. Please contact Performance Team in

Software AG for suggestions, help and clarifications.

Software AG products Tuning Guidelines for Performance 6/7/2017

6 ©2017 Software AG. All rights reserved.

3. Integration Server

3.1. Primary optimization

Optimization and review of the Flow and Java related services are important while implementing the

processing algorithm in Integration Server.

3.1.1. Flow service optimization

These are some high-level considerations:

 Stabilization of any performance test should be conducted early

 When measuring performance; predictable, consistent and repeatable results are necessary

 Validation of any infrastructure in use and elimination of any variations between environments

should be performed

 Any performance evaluation must include a well-defined objective

 Goals may target highest throughput, ability to scale, and reduced latency

 The requirements for a solution will often dictate acceptable settings (or rule out certain settings)

for transaction handling, acknowledgement modes, and latency

 Testing of both happy path and failure processing scenarios should be conducted

 The performance tests must either include failure handling capabilities or the requirements must

specifically exclude them

 The system performance often degenerates when failures occur and this should be measured

 Tune JMS trigger settings to support appropriate concurrency for the solution

 Concurrency is affected by threads, pools, queues used and number of Integration Server

instances

 Concurrency normally has to increase to reduce latency

 Increasing concurrency without consideration or limit will often result in reduced performance or

throughput

 Tune the processing implementation (that is service implementations) to reduce latency

 Increased latency will drive concurrency requirements up for the same target throughput

 Measurements should be made to assess latency at a high level before homing in on specific

areas for incremental improvements

 Tuning of the implemented code is far more effective as a first approach than expending a lot of

effort on operating system or JVM tuning

 Sending a batch of JMS messages

 The JMS specification v1.1 does not have ‘batch on send’ concept

 Apply appropriate design considerations for use of transactions

 Fully test XA transaction performance, that is use more than one separate XA resource

 All usual best practices regarding implementation of performance testing applies as well

Software AG products Tuning Guidelines for Performance 6/7/2017

7 ©2017 Software AG. All rights reserved.

Sl.

No

Parameter Name Default Value New Value Comments

1. Pipeline value Not dropped Needs to be

dropped until

required

If there is large pipeline data then it

can increase network traffic

2. Document

validation

pub.schema:va

lidate

Should be

performed only

once

validate-input or validate-output

options should be checked only once

3. service caching False True This indicates the number of

messages that can processed at a

time

4. Stateless False True This reduces memory consumption as

fewer sessions are kept on the server

3.2. Tuning guidelines in Integration Server

3.2.1. Logging

I/O is many times more expensive than CPU/ memory operations. Keeping a log of key documents for

auditing and recovery purposes can have a significant effect on performance. Logging adversely impacts

performance because logging threads must be synchronized.

Based on the solution and business requirement, components which should be enabled must be

configured to use database as destination and logging mode should be synchronous. This is based on the

current design of Integration Server.

3.2.2. Thread pool

Integration Server maintains a variety of thread pools. The most important of these pools is the service

thread pool. All client requests to invoke services are processed using threads from the service thread

pool. If Integration Server does not have enough threads in the service thread pool, it will block the

execution of a request. For instance, if 100 clients make a request to the Integration Server and the

Integration Sever has only 75 available threads in the thread pool, 75 of the requests will execute

immediately. The remaining 25 requests will wait until threads become available in the service thread pool.

In some cases, larger thread pools may increase throughput. However, larger thread pools do not always

translate into higher throughput. When the Integration Server is permitted to execute a large number of

threads concurrently, context switching can exert a noticeable effect on performance. The only way to

determine the appropriate size of the thread pool is through testing. To identify the optimal pool size,

increase the number of threads in the pool and measure the performance under each size. (Note that

every time you allocate more threads to the server thread pool, you should also increase the heap size, as

every thread needs some amount of memory for itself).

Software AG products Tuning Guidelines for Performance 6/7/2017

8 ©2017 Software AG. All rights reserved.

3.2.3. Heap size

Default heapsize may prove to be too small for enterprise level solution expected to scale over time. It is

always recommended to set minimum and maximum value to equal value. Optimum value for the heap

should be derived from performance tests, analyzing the memory utilization pattern and GC log. To begin

with, 4GB minimum and maximum should be good.

Software AG products Tuning Guidelines for Performance 6/7/2017

9 ©2017 Software AG. All rights reserved.

3.2.4. JDBC pools

3.2.4.1. MaxPooledStatements

Setting the MaxPooledStatements connection option enables statement pooling. Enabling statement

pooling allows the driver to reuse Prepared Statement objects. When Prepared Statements are closed,

they are returned to the pool instead of being freed and the next Prepared Statement with the same SQL

statement is retrieved from the pool rather than being instantiated and prepared against the server.

3.2.4.2. JDBC connections and login timeout

It is really important to have separate thread pool definitions for each of the components. For better

performance minimum value should be set to some number and not zero.

To prevent Login Time out related problem which occurs because of multiple reasons, it is recommended

to set LoginTimeout, if login time out is observed frequently.

LoginTimeout, in seconds, is the time driver that waits for connections to be established before returning

the control to the application and throwing timeout exception. Default is 0, which means driver does not

time out for a connection request.

Sample URL-

DB URL: jdbc:wm:oracle://DBhost:<Port>;serviceName=wmschema;LoginTimeout=120

To prevent this problem, Login Timeout parameter can be appended at the end of your DB URL for the

JDBC Pool or JDBC Adapter. The Login Timeout value should be set based on network performance in

the landscape.

3.2.5. Adapters

3.2.5.1. JDBC adapter

The Java object generated by webMethods to perform the Stored Procedure call is CallableStatement. The

Callable Statements object is created every time the adapter service is invoked. The following properties

can be configured to enable caching of the callable or prepared statements.

 ImplicitCachingEnabled=true.

 maxStatements=500.

Minimum and maximum pool size

Minimum and Maximum connections should be tuned such that they are able to serve the concurrent

number of incoming request.

Block timeout

This field specifies the number of milliseconds that the Integration Server will wait to obtain a connection

with the database before it times out and returns an error. For example, a pool with Maximum Pool Size of

Software AG products Tuning Guidelines for Performance 6/7/2017

10 ©2017 Software AG. All rights reserved.

20 is configured. In the event of 30 simultaneous requests for a connection, 10 requests will be waiting for

a connection from the pool. If the Block Timeout is configured to 5000, the 10 requests will wait for a

connection for 5 seconds before they time out and return an error. If the services using the connections

require 10 seconds to complete and return connections to the pool, the pending requests will fail and

return an error message stating that no connections are available. Block Timeout value that is too high

may encounter problems during error conditions. If a request contains errors that delay the response, other

requests will not be sent. This setting should be tuned in conjunction with the Maximum Pool Size to

accommodate such bursts in processing.

Expire timeout

If connection pooling is enabled, this field specifies the number of milliseconds that an inactive connection

can remain in the pool before it is closed and removed from the pool. The connection pool will remove

inactive connections until the number of connections in the pool is equal to the Minimum Pool Size. The

inactivity timer for a connection is reset when the connection is used by the adapter.

Setting Expire Timeout value too high may result in a number of unused inactive connections in the pool.

This consumes local memory and a connection on your backend resource. This could have an adverse

effect if resource has a limited number of connections. If Expire Timeout value is set too low, performance

could degrade because of the increased activity of creating and closing connections. This setting should

be tuned in conjunction with the Minimum Pool Size to avoid excessive opening/ closing of connections

during normal processing.

3.2.5.2. MQ adapter

Wait interval

Wait interval is something like pull interval which listens to the queue after every time out irrespective of

whether the queue is empty or full. Once it starts receiving messages, it will keep on pulling messages until

the queue becomes empty. Once the queue becomes empty, it will wait for the “waits interval” time out to

happen so that it can listen to the queue and check for the messages.

It is always better to have higher Wait Interval (increased wait interval time) when incoming message rate

is high and real time. Wait interval can be set to smaller value as well but it consumes lot of CPU cycles

when multiple listeners are configured and becomes overhead when number of cores on the box are 2 or

less.

Pool size

The minimum number of connection objects that remain in the connection pool at all times. When the

adapter creates the pool, it creates this number of connections.

The maximum number of connection objects that can exist in the connection pool. When the connection

pool has reached its maximum number of connections, the adapter will reuse any inactive connections in

the pool or if all connections are active, it will wait for a connection to become available.

Software AG products Tuning Guidelines for Performance 6/7/2017

11 ©2017 Software AG. All rights reserved.

3.2.5.3. SAP adapter

The best performance in the volume tests as well as in the scalability scenarios can be achieved using the

following parameters.

watt.PartnerMgr.noMsgStorage

This parameter can be set to "true" or "false". If set to "true", then the message body of the incoming

document will not be stored to disk, although a transaction will be created (or maintained) for the incoming

document, and the transaction can be monitored later in the transaction list.

watt.PartnerMgr.xtn.store.fastAsyncMode

This parameter can be set to "true" or "false". If set to "true", then the information in the message store will

be read or written asynchronously.

watt.PartnerMgr.xtn.store.timeToLive

The parameter can be used to set the "Time-To-Live" threshold value of the asynchronous read/ write

cache. It is only effective when "fastAsyncMode" is set to true. The "Time-To-Live" value determines how

many seconds a transaction will be kept in the internal cache until it gets purged.

watt.sap.xtn.cacheFlushPeriod

This parameter can be set in the server.cnf to improve the transaction store performance.

Software AG products Tuning Guidelines for Performance 6/7/2017

12 ©2017 Software AG. All rights reserved.

4. Process Engine

4.1. Cost of process step

After the business tasks are identified, the technical staff implements it in the process model. Optimal

designing of business process is highly important for its performance and throughput (for both Business

and BPM software). Research has been conducted to find the cost of a process step in a model. Let us

assume a Business Process with 10 steps (excluding the document receive step). Each step is associated

with Integration Server flow service which implements some logic.

Baseline numbers were taken with 10 steps process model. Step 2 and 3 were combined as one step and

their business logic were also executed sequentially so the functionality is not affected but the business

process has lost one step. Now there are 9 steps in the process model performing the same business

logic. Throughput number for 9 step process model was recorded. Eventually more steps were combined

together and throughput was measured at every step. Refer to the following result table:

Description Number

of steps

Throughput/

sec

% increase from

baseline

% increase from

previous step

1) 10 step process model with each

step mapped to an Integration

Server service.

10 65.15 <Baseline> <Baseline>

2) Reduce the step to 9 by

combining step 2 and 3

9 69.44 6.58% 6.58%

3) Reduce the step to 8 by

combining step 4 and 5

8 77.52 18.99% 11.64%

4) Reduce the step to 7 by

combining step 6 and 7

7 85.84 31.76% 10.73%

5) Reduce the step to 6 by

combining step 8 and 9

6 94.79 45.50% 10.43%

6) Reduce the step to 5 by

combining step 2,3,4 and 5

5 105.82 62.43% 11.64%

7) Reduce the step to 4 by

combining step 6,7,8 and 9

4 119.76 83.82% 13.17%

Average increase per step 10.70%

4.2. Distributed database approach

Distributing Process Engine database is another approach for increasing the performance of BPM. In most

of the real time scenarios, the process models are deployed in more than one Integration Server cluster

and all Integration Servers point to the same database.

Software AG products Tuning Guidelines for Performance 6/7/2017

13 ©2017 Software AG. All rights reserved.

4.3. Effect of correlation

Correlation is an important feature in BPM which helps the incoming documents be processed by the

correct instance of a business process.

When correlation is introduced in a process model, extra database calls are included in the execution flow

to establish and lookup correlation. There is an additional transition delay of extra receive step which gets

added here.

4.4. Impact of joins

AND join is more expensive than any other join types. As the number of steps to join increases, the time

taken for AND join also increases.

COMPLEX joins cost depends on how many simple join types are used in it. The cost can be predicted as

well. Consider the following two cases:

Split time is less when compared to join time.

There is no difference in performance between using simple AND join and COMPLEX performing AND

operation.

Split time is directly proportional to the number of steps it splits into. Only the critical path time is accounted

for split time and not all possible paths.

OR and XOR joins has almost the same impact in terms of performance.

OR and XOR joins takes only specific time, no matter how many steps are actually joining. This is

because, out of all possible paths only one holds green signal. Thus, may it be 2 steps or 10 steps joining

at a step with OR or XOR join type and one step condition is true, then it’s going to take only same time.

4.5. Effect of in-line sub process

Inline sub-process should be used only when it is absolutely necessary. It is not advised to use containers

for visual/ UI purpose as it has negative impact on performance.

Software AG products Tuning Guidelines for Performance 6/7/2017

14 ©2017 Software AG. All rights reserved.

5. Trading Networks

5.1. Trading Networks performance guidelines

Overall performance for Trading Networks is very tightly bound to the RDBMS performance. In every test

case, the database became the bottleneck. Sometimes the disk I/O is maxed out. In other instances, the

CPU in the database server becomes the bottleneck. To optimize Trading Networks, focus first on

database optimization. For internal Trading Networks document submissions, use

wm.tn.doc.route:routeXML instead of wm.tn:receive. This will bypass the user check and is therefore

slightly faster.

Within Processing Rules, execute Flow services in asynchronous mode where appropriate or practical.

The property "tn.task.threadpool.pct".if set, it will use that percentage of server threads for Trading

Networks Job Manager and this is used for Trading Network outbound delivery of documents and not

incoming (both for routing and guaranteed jobs).

There isn't any default value for watt.server.tspace.timeToLive. If a document is written to TSpace, it would

get deleted in the following cases:

 If the timeToLive time is over from the creation time of the document

 The top level service has completed its execution

The document will get deleted from TSapce when the next document is created in TSapce. The value

shouldn't be too large, or else the files will be in TSapce for a longer time and there may be undesirable

results where TSpace gets filled up and no more large docs can be processed. Keep it to optimum value

(say around 60 secs or 3 mins) which doesn't affect the processing of document and also there is regular

cleanup of TSpace.

5.2. Activity log properties

tn.docType.EnableLogDocumentType: Specifies whether you want Trading Networks to log document type

auditing information to the activity log when you manage document types from My webMethods Server.

tn.procRule.EnableLogProcessingRule: Specifies whether you want Trading Networks to log the

processing rule auditing information to the activity log when you manage processing rules from my

webMethods.

tn.profile.EnableLogProfileChanges: Specifies whether you want Trading Networks to log profile auditing

information to the activity log when you manage profiles from My webMethods Server. This property also

controls whether you want to log actions related to role-based access.

Software AG products Tuning Guidelines for Performance 6/7/2017

15 ©2017 Software AG. All rights reserved.

tn.tpa.EnableLogTPA: Specifies whether you want Trading Networks to log TPA auditing information to the

activity log when you manage TPAs.

5.3. Archive properties

tn.archive.archiveAfterDays: Specifies the number of days so that Trading Networks archives documents

older than the specified number of days. Specify a number from 0 through 730365. If you omit this property

or specify 0 for this property, Trading Networks does not archive documents.

tn.archive.deleteAfterDays: Specifies the number of days so that Trading Networks deletes documents

older than the specified number of days. Specify a number from 0 through 730365. If you omit this property

or specify 0 for this property, Trading Networks does not delete documents.

5.4. Large document handling properties

tn.BigDocThreshold: The threshold size at which Trading Networks should consider a document to be

large.

5.5. Other properties

tn.clean.routePipeline: Removes some of the contents of the pipeline when a document is routed. If set to

true, this property removes all data from the pipeline except bizdoc, rule, TN_parms, and $tnReprocess.

Setting this property to true can help prevent the pipeline from growing very large, which could affect

system performance.

tn.db.fetchMaxRows: Specifies the maximum number of result rows that Trading Networks must retrieve

from the database for each query. If you set the value as zero, then all the rows of the query result are

retrieved from the database.

tn.receive.clearTNObjects: Specifies whether you want Trading Networks to drop pipeline variables that

represent Trading Networks objects. Trading Networks drops the pipeline variables after it completes the

execution of the wm.tn:receive entry point service. You specify the pipeline variables to drop using the

tn.receive.clearKeys property. Dropping these objects reduces the time it takes to process each document

and improves the overall performance of the server because the content handler does not have to format

the objects for return to the client. Specify true if you want Trading Networks to drop the objects.

tn.store.pool.stmt: Specifies whether you want Trading Networks to cache SQL statements in memory

rather than read them from WmTN/config/dbops.sql. Specify true to have Trading Networks cache SQL

statements; specify false to have Trading Networks read SQL statements from a file.

5.6. Database queries properties

tn.query.maxrows: Specifies the default number of rows that the query services return. The query services

are services in the wm.tn.query folder. An input variable to the query service allows specifying the

maximum number of rows to be returned. If no input is provided to this variable, the query services use the

value specified by the service property

Software AG products Tuning Guidelines for Performance 6/7/2017

16 ©2017 Software AG. All rights reserved.

6. Java Messaging Server (JMS)

These are general high-level considerations that should always be taken in to account and relate to the

design of the overall solution:

 Stabilise any performance test environments early

o When measuring, predictable, consistent and repeatable results are necessary

o Run tests for longer and critically assess any unexplained variations observed

o Finalise and document the JMS Provider’s configurations

o Validate any infrastructure in use and eliminate any variations between environments

 Document the final queue, transaction and processing designs by reference to well-defined

requirements

o Any performance evaluation must include a well-defined objective

o Goals may target highest throughput, ability to scale, reduced latency and so on

o The requirements for a solution will often dictate acceptable settings (or rule out certain

settings) for transaction handling, acknowledgement modes, latency and so on

 Test both the ‘happy path’ and failure processing scenarios

o The performance tests must either include failure handling capabilities or the requirements

must specifically exclude them.

o The system performance will often degenerate when failures occur and this should be

measured.

o Performance testing must include normal running with any safety systems in place (for

JMS that might mean using persistent messages, but other impacts such as failure when

using batches, or the need for processing to include recovery auditing increasing latency

are significant).

 Tune JMS trigger settings to support appropriate concurrency for the solution

o Concurrency is affected by threads, pools, queues used and number of IS instances

o Concurrency normally has to increase to reduce latency

o Increasing concurrency without consideration or limit will often result in reduced

performance or throughput.

 Tune the processing implementation (i.e. service implementations) to reduce latency

o Increased latency will drive concurrency requirements up for the same target throughput

o Measurements should be made to assess latency at a high level before homing in on

specific areas for incremental improvements

o Tuning of the implemented code is normally far more effective as a first approach than

expending a lot of effort on OS or JVM tuning.

 Use transactions to batch sending of JMS messages

o The JMS specification v1.1 does not have ‘batch on send’ concept

o Apply appropriate design considerations for use of transactions

o Fully test XA transaction performance i.e. use more than one separate XA resource

All usual best practice regarding implementation of performance testing apply as well.

Software AG products Tuning Guidelines for Performance 6/7/2017

17 ©2017 Software AG. All rights reserved.

6.1. Transactions and Re-delivery

In JMS, a transaction organizes a message or group of messages into an atomic processing unit.

Transactions in Integration server may be used for sending or receiving. When sending, the calls to the

JMS send service must be wrapped by a call to startTransaction and a commit. Although there is no

general guidance, a starting figure of 10 or 20 messages per batch is often appropriate.

6.1.1. Local or XA Transaction

The JMS interactions follow the JTA specification relating to the use of Local or XA transactions. Only one

Local Transaction resource may be enlisted in a transaction context. Therefore, where JMS interactions

need to involve more than one JMS Provider resource (varies depending on the JMS Provider used) these

will need to be through XA Transaction connections.

Adoption of XA transaction may bring in a considerable and noticeable performance impact on the

solution. Nature of the solution and JMS provider specific may impact the performance further. Hence, as

part of design decisions it should be considered whether XA is really required as derived from solution

requirement.

A viable alternative to XA transactions in many solutions is to be support guaranteed at least once delivery

with duplicate detection mechanisms in place. Depending on solution requirements, this is sometimes

appropriate, especially if duplicate detection capabilities are required for reasons other than batching.

6.1.2. Multiple JMS Connection Alias

The Integration Servers are often able to generate better throughput if there are multiple JMS Connections

to the JMS Provider. This is particularly the case when transactions are being used, because transactions

under JMS, limit some of the batching/ threading optimizations possible.

Multiple triggers consuming from or sending to one or more queues/ topics can be configured to use

multiple JMS Connection Aliases even if connecting to the same JMS Provider instances. This is relatively

trivial to implement because multiple triggers can be easily configured to invoke the same services.

This approach may be useful as it allows a transactional trigger to be used but makes it easy to create

concurrency in the solution (simply by copying the triggers and optionally using different JMS connection

aliases).

The exact benefit of using multiple JMS Connection Aliases and multiple triggers in this way would need to

be investigated for each solution implemented. The same benefits may be achievable by using the trigger

thread controls and multiple triggers using a single JMS Connection Alias and that approach should be

tried first.

6.1.3. Trigger Concurrency

Throughput requirements are directly driven by the ability to exercise maximum concurrency at the trigger

levels. Optimum values for the threads in Integration Server governing the concurrent volumes should be

determined by iterative performance test mechanisms.

Software AG products Tuning Guidelines for Performance 6/7/2017

18 ©2017 Software AG. All rights reserved.

Higher threads does not necessarily mean higher throughput. Other factors like acknowledgement modes,

target service latency invoked by the trigger thread, storage sub-system speed and so on also impact

overall concurrency.

At the trigger levels, to maintain the throughput it should be balanced with the message processing

overhead specially in cases of batch processing.

Operational laws of performance could be used to get a hint about the concurrency levels

Concurrent threads required =

 (Throughput required * Latency of processing of message batch / batch size)

6.1.4. Connections to JMS provider

Triggers in default configuration operate on a single TCP connection to the JMS provider feeding the

messages to the available threads. In high performance requirement scenarios, single connection leads to

limiting point for concurrency with the property available in Integration Server under JMS connection alias

known as “create new connection per trigger“. Desired connections to JMS provider could be established

from the trigger properties section.

In the trigger property section through Software AG designer, connection count can be configured. Range

is between 1 to 10 connections. It has been observed that starting with 5 to 8 connections is a good option

to begin with.

6.1.5. Solution design decision-Processing overhead or Latency

Solution design plays critical role in maintaining the long term scalability goals as per business growth. In

JMS based integrations, messages processing algorithm implementation plays vital role in attaining the

required throughput. Small reduction in latency of service processing gives substantial gain in overall in the

increasing throughput of the solution.

Software AG products Tuning Guidelines for Performance 6/7/2017

19 ©2017 Software AG. All rights reserved.

6.2. Limiting factors in JMS scenarios

It is equally important to understand each layer of solution to derive the confidence when optimum

configuration from the JMS facilities is reached and when to start looking at other options outside the

application boundary for improvements.

 Contention either at the solution level or the resource level degrades throughput. It should be

observed that reading and writing to the same queue in real time might bring queue contention into

the landscape.

 Unexplained variations in the performance tests run over long duration could hint resource

saturations or the external resources like Database related contentions.

 JMS provider may fail to maintain the sustained publish and subscribe rate if there are too many

client connections operating concurrently on the single queue.

 High latency requests (or even transient high latency due to system slowdowns) may generate

more concurrency resulting in further degradation of the system. Concurrency should be

constrained.

 The connection to the JMS Provider will normally be utilizing network bandwidth and this must be

sufficient to move messages, payloads and support any overhead.

 Connected or dependent systems may influence throughput in an unpredictable fashion. For

example, if production loads on a database vary and sometimes cause reduced throughput on a

critical database for the solution (such as when a backup is in process or some large batch

processing has started), this would directly affect throughput.

 The JMS Provider must be able to support writing to storage for persistent messages and the

storage itself may become a limiting factor.

There are too many potential external factors to mention and others will exist. However, the solution

design and the assessment of performance cannot be done without considering the other impacts that

increasing threads and concurrency in the Integration Server will have especially on the JMS Provider

and on the database in use.

6.3. Tuning Considerations

 Number of Integration Server instances – multiple Integration Server instances increases the

number of consuming resources

 Number of JMS Connection Aliases – particularly when using transactions, the use of multiple

separate JMS Connection Aliases allows the Integration Server to generate a more even loading

on the system.

 JMS Transaction Mode – configured in the JMS Connection Alias, transactions may be used

when sending to group multiple messages and reduce the commit load on the JMS Provider

 The desired transaction design will dictate which transaction model is appropriate.

 The use of transactions prevents the JMS Triggers using batches; therefore if transactions are to

be used for consuming messages, the mechanism to obtain messages must be re-implemented to

use on-demand JMS consumers under the control of an explicit transaction.

Software AG products Tuning Guidelines for Performance 6/7/2017

20 ©2017 Software AG. All rights reserved.

 If XA transactions are to be used across multiple Queue Managers, then the impact on throughput

needs to be validated.

 Create New Connection per Trigger – this is enabled on the JMS Connection Alias and affects

the consumption of messages by JMS triggers. It allows Integration Server to create separate

groups of connections per trigger in order to increase the ability to deliver JMS messages to

service threads.

 Initial recommendation is to enable this option and see the setting on the JMS triggers in Designer.

 Producer Caching Mode – this is enabled on the JMS Connection Alias and affects the sending

of messages to the Queue Managers. It allows Integration Server to create one or more groups of

persistent sessions which reduces the overhead associated with creating sessions when sending

messages. The maximum, minimum and timeout values must also be specified.

o Initial recommendation is to enable this option with at least the default session pool,

having a minimum of zero and a maximum equal to the maximum number of threads

that may be sending at any given time (typically the maximum number of trigger

execution threads). The timeout should be set to 60,000 milliseconds.

o Using zero as the minimum prevents stale or broken network connections appearing

after long uptime periods without affecting average throughput in any significant

manner. If the transient (and minimal) latency associated with recreating a new

session after the timeout period is not acceptable, then this should be increased.

o Separate groups of sessions may be allocated to one or more specified JMS

destinations in order to be more selective about reserving sessions for sending

particular messages. This is configured in the JMS Connection Alias as well.

o Per destination connection pools may be selected depending on the solution design

but there is no general guidance.

 Number of JMS Triggers – a single JMS trigger may be duplicated to provide additional

bandwidth for consuming messages from a particular source.

o Initial recommendation is one trigger which may be increased if performance testing

shows this to be beneficial.

o The Connection Count per JMS trigger has an imposed limit of 10 per trigger. Multiple

triggers will also increase the ability to generate more than 10 connections if needed.

o Multiple triggers generate concurrency in the management of connections to the Queue

Managers. This is an appropriate way to increase the consuming resources in one

Integration Server for one source of messages.

o Using cut-and-paste is appropriate in Designer for both testing the instantaneous effect of

more triggers (pasting an enabled trigger dynamically creates a new trigger in a test or

development environment) and for creating multiple copies once the preferred

configuration of a trigger has been determined.

 JMS Trigger properties – all set in Designer

o Processing Mode – this should be concurrent to permit multiple threads where possible.

Serial processing modes are uniquely constrained by processing latency and normally

present more specific problems associated with improving efficiency.

o Max Execution Threads – this controls the maximum number of service threads that will

be launched by the trigger to process consumed messages. This may only be increased

from one if the Processing Mode is concurrent.

Software AG products Tuning Guidelines for Performance 6/7/2017

21 ©2017 Software AG. All rights reserved.

 The starting value should aim to generate the required number of execution

threads over all available triggers and Integration Server instances in order to

reach the required throughput (based on the latency for processing a single batch)

 The calculation should be based on the processing latency and desired

throughput shown in section Error! Reference source not found., Error!

Reference source not found..

o Connection Count – this controls the number of JMS Provider Connections being used to

feed messages into the available service threads for the trigger. The value may range

from 1 to 10 but cannot exceed the Max Execution Threads.

 Recommended starting value is 5 but this will need to be modified based on actual

performance measures.

 Max Batch Messages – this controls the number of messages obtained from the message queue

and delivered to each service thread in one invocation for processing.

Software AG products Tuning Guidelines for Performance 6/7/2017

22 ©2017 Software AG. All rights reserved.

7. My webMethods Server (MWS)

7.1. General performance Notes

Searches: To optimize search performance, if you are a system administrator: Click Administration >

Content > Search Admin, click Tools -> Optimize Indexes to merge all segments in index to improve

performance.

CAF Applications: Because CAF applications depend on both the server and client browser, testing with

different browsers to identify whether performance bottlenecks are at the server or due to client rendering

should be conducted. Firefox generally performs better than Internet Explorer.

Minimize the number of controls per page to decrease render time. Another option is to use hide-able

panels and asynchronous controls with both the Lazy Load and Two Pass properties set to true to reduce

the number of controls rendered during the initial page load.

Simple controls have little negative impact on performance. Use as many simple controls on a single page

as required while conforming to good usability principles helps performance. Simple controls include all

read-only controls such as panels.

Loading large numbers of options in list controls increases render time. Generally, loading more than 100

items in simple lists, ‘select <item>’ and swap box controls should be avoided.

Minimize the number of list items displayed per page. Use pagination for tables and limit the page size to

no more than 20 rows when possible. Use asynchronous tables for faster rendering. The recommended

setting recommends sorting the table entries.

Minimize the size of sortable tables. Ensure that you have no more than 200 table rows when sorting is

required. . When the number of table rows must be more than 200, implement sorting in the

ISortableTableContentProvider implementation used by the table.

Use Tree controls only when it is really necessary. Using Async Tree with Lazy Load tree provider

implementation and expand the tree to the 1st level only by default for faster rendering.

Copy the webm-taglib.tld file to the local package to improve the performance of the web application.

7.2. DB query roles

When Central Users are enabled, all MWS roles and users are visible to Integration Server when end-

users access CAF applications and calls into Integration Server services; the user context is used to

invoke the services (typically single-sign-on using SAML). Permissions on Integration Server services are

configured and Integration Server will attempt to evaluate all ACLs the user and check for user role

membership. For every DB Query role, there is a SQL query to be run. Therefore, for more number of

roles, more SQL queries are generated. There is a cache for the queried information, but default cache

eviction policy will flush the information during every user login. There is a configuration for Role Cache to

ensure that the cache invalidation execute happens only when required.

The “config” file is located in the following jar:/common/lib/wm-mws-library.jar$/mws-config/cache.xml

Software AG products Tuning Guidelines for Performance 6/7/2017

23 ©2017 Software AG. All rights reserved.

Note: Change "roleCacheLifecycle" attribute of "Role Cache" to value "1" from default "0". If

you are not using MWS roles for any permissions check in inside Integration Server, you can

also set "defaultCacheTimeout" attribute to "-1" to indicate that the cache never expires.

7.3. MWS DB

Location: <MWS_Installation>\server\<Instance_Name>\config

MaxConnections – (100, 300, 600)

Significance - The max number of connections allowed being open to the database

MinConnections – (30, 60, 120)

Significance – 20% of max connection. Setting this value to too low will result in creating a new connection

at runtime instead of using it from a pool of connections. Set the MinConnections to a small non-zero

value.

7.4. Web XML

The session-timeout parameter is important in the web XML configuration. Session information is stored in

the memory till a user logs out or is logged out automatically due to a time-out. If the session-timeout is

long, users consume memory do not relinquish the memory even after moving away from the page, this

memory is locked in the tenured space. A few applications can consume significant memory.

The default session-timeout is 30 minutes. Ensure that the value does not exceed a couple of hours. Long

timeout values prevent you from knowing if the users are still using the system as their session will still

show as active in the session monitor.

7.5. Glue

Glue has a single configuration file that is loaded at startup from your file system or classpath. This

configuration file allows you to control settings for the Glue subsystems, such as thread pool sizes and

buffer capacity.

threadPoolSize

Significance - When the runtime system needs a thread, it requests the thread pool for a thread to run the

task. When the thread finishes the task, it adds itself back to the thread pool to be reused. The pool is

initially empty and grows on demand up to a maximum value. Each request needs 1 thread to service the

web service call.

maxOutboundKeepAlive

Significance - When a Glue client wants to communicate with a remote server, it requests the outbound

connection pool for an HTTP connection to the server. When the request has been sent and the response

has been received, the client leaves the connection open and gives it back to the pool to be reused. The

pool is initially empty and grows on demand up to a default maximum of 30 outbound connections. When

the maximum is reached, the least recently used connection is closed to make room for a new connection.

Software AG products Tuning Guidelines for Performance 6/7/2017

24 ©2017 Software AG. All rights reserved.

maxInboundKeepAlive

Significance - When a Glue server receives a connection request from a remote client, it grants the

request, creates the inbound HTTP connection, and then allocates a thread from the thread pool to service

the connection. If there are no available threads, the request is queued until a thread becomes available.

After the request has been serviced, the HTTP server has to decide whether to close the connection or to

keep it alive so that it can quickly process additional requests from the same client. By default, up to 50

inbound connections are kept alive at any time. Default value for the maximum number of inbound

connections kept alive can be changed.

clientReadTimeout

Significance – Timeout in milliseconds for a client reading a response.

serverReadTimeout

Significance - Timeout in milliseconds for a server reading a request.

Acceptors

Significance - The number of thread dedicated to accepting incoming connections. This should be set to

number of cores. It is assumed that you can dedicate half of the available cores for My webMethods

Server.

Steps to edit Glue configuration file:

 Open glue-config.xml from following location:

 <MWS_Installation>\server\<Instance_Name> \deploy\portal.war\WEB-INF

 Edit the file and save.

7.6. Jetty

Jetty is a HTTP open server used within MWS. The Jetty configurations are defined in the Jetty.xml file. It’s

important not to over-allocate minimum number of threads. Setting the minThreads and maxThreads

parameters to a very large number creates a large number of threads consuming resources. Further,

garbage collection takes a long time when there are a large number of threads.

minThreads

The minimum number of unused threads to keep within the thread pool. A large number of unused threads

will allow the server to respond to sudden increase in load with little latency. If there is an estimation of

max and average load, the difference can be in between average and maximum.

maxThreads

Limit to the number of threads that can be allocated to connections for that HTTP listener. This option will

limit the number of simultaneous users of the server as well as the maximum memory usage. The primary

objective of the maxThread parameter is to protect the server from excess resource utilization from high

connection or request rates.

Out of memory

Each accepted connection/ thread consumes memory and unlimited threads will eventually result in an

OutOfMemoryException. Note that the memory allocated to the JVM can be increased to avoid this limit,

Software AG products Tuning Guidelines for Performance 6/7/2017

25 ©2017 Software AG. All rights reserved.

but at some level physical memory will be exceeded and the server performance will decline. Eventually,

virtual memory will be exhausted as well.

Out of threads

Threads are normally implemented by the host operating system and are a finite resource that can be

exhausted. The operating system can normally be tuned to increase this limit, but not indefinitely as

system performance will eventually degrade.

Out of file descriptors

TCP/IP connections are implemented by most operating systems using file descriptors and are a finite

resource that can be exhausted. The operating system can be tuned to increase this limit, but not

indefinitely as system performance will eventually degrade.

7.7. SAML

SAML authentication can reduce performance because the following happens for every call between

Integration Server and My webMethods Server.

For this example, consider there is on Integration Server instance named IS1 and two My webMethods

Server instances named MWS1 and MWS2. When performing a SAML authentication:

 MWS1 initiates a call to IS1

 MWS1 creates a SAML assertion for the current user identity and stores it in memory on MWS1.

 Part of assertion is information pertains to what MWS server assertion was generated. MWS1 in

this case.

 MWS1 invokes a web service on IS1, therefore passing this SAML assertion as password for

Basic Auth.

 IS1 needs to validate assertion

 IS1 is configured with SAML provider URL, which is in the case of a cluster is a Load Balancer

between MWS nodes

 IS1 calls an anonymous web service of SAML provider to validate an assertion it received

 This web service request is routed to MWS1 or MWS2 (round-robin)

 If SAML validate web service request is routed to MWS1, then MWS1 simply checks the presence

of a valid assertion it has in its memory list and responds true back to IS1.

 If the SAML validated web service is routed to MWS1, then MWS1 checks the presence of a valid

assertion it has in its memory list and responds back true to IS1.The assertion is removed from

memory and becomes invalid.

If the SAML validated web service request is routed to MWS2, it does not have this assertion in its

memory. MWS2 obtains the originator from the assertion (example, MWS1) and uses MWS Remote

Command Invocation (this is an HTTP call) to call directly MWS1 to validate the assertion and then

responds back to IS1 with positive or negative result. The parameters mentioned below have to be set

when MWS are configured as a cluster. SAML in this use case adds additional overhead to web service

Software AG products Tuning Guidelines for Performance 6/7/2017

26 ©2017 Software AG. All rights reserved.

interactions between MWS and IS. This increases the authentication caching used by the Common

Directory Services running in IS.

-Dauthenticate.cache.capacity=10000 (Suggested a value to equal number of users that will be able to

invoke webService.)

-Dauthenticate.cache.timeout=3600 (The default is 2 minutes, but this info doesn't often change so

increase to 1 hour or more).

7.8. Web service and task engine

Web Service processing threads on MWS are used to processing.

-Dmax.webservices.threads=10 (default).

For example, if these are task searches returning large results - the requests consume a large amount of

memory.

7.9. LDAP

Set minimum size for the task cache to 10 times the default.

Role cache is set to ensure authentication is made invalid after a specified time, and not to invalidate user

logins. The cache.xml file is used for user login invalidation.

7.10. Task deletion

Apart from creating index for T_TASK.PARENT_TASK_ID, you can disable Task Deletion Events by

setting the following parameter to true.

Setting -Dtask.delete.event.suppressed to true rescues the number of database calls when deleting the

task.

7.11. Other Parameters

7.11.1. Search Tasks

This option specifies the maximum number of concurrent threads allowed to execute task searches. While

the default value is high, set this value conservatively to ensure that the maximum number of task search

threads and maximum number of task update threads (default 30) is less than the maximum size of the

My webMethods Server Data Source JDBC pool (default size is a maximum of 100 connections).

Software AG products Tuning Guidelines for Performance 6/7/2017

27 ©2017 Software AG. All rights reserved.

-Dtask.inbox.search.threads may need to be increased depending on your use case. Ensure that you don't

set a value that is more than the maximum number of available JDBC connections as it may otherwise

cause a deadlock.

7.11.2. Update Threads

This option specifies the maximum number of concurrent threads allowed to run task updates. The threads

have to be increased based on the use cases. The number of threads available should be more than the

maximum available JDBC connections as it may otherwise cause a deadlock.

-Dtask.update.threads=30

7.11.3. Processing Threads

-Dtask.max.processing.threads default value is 4.

This value is the number of threads that are used to process task events that may be low for real-world

applications.

7.11.4. In-Memory event handling

-Dtask.event.lightweight=true|false

For version 8.2 and later, this value is set to true by default. Dtask.event.lightweight enables Task Engine

to not use JMS queue for processing task events and all the events are processed on the same JVM

instances.

The load on the database is minimized, thus speeding up processing. This parameter should only be used

in a single node set-up. If this parameter is enabled in a cluster, there is risk that the same task is updated

by multiple users.

Software AG products Tuning Guidelines for Performance 6/7/2017

28 ©2015 Software AG. All rights reserved.

8. Universal Messaging and Network Infrastructure

In Universal Messaging clusters, the state of each cluster node is updated regularly. A cluster requires a

certain number of cluster nodes to work, to form an active/ active cluster, more than 50% of the servers (a

quorum) in the cluster must be active and intercommunicating. Hence, any latency in the network would

impact performance of message delivery. Ensuring minimal latency with stable networks and minimal or

near zero interrupts would ensure smooth running of Universal Messaging with sustainable performance

numbers.

Following are some of the best practices: If possible, firewalls or numerous hops through bridges should

be avoided to have a stable network and optimal performance.

 There should be minimum network latency between Client(s) and a Universal Messaging server.

 LAN over WAN is preferred.

 Usage of HTTP/ HTTPS should be avoided for inter-realm communication. Using NIO socket

protocols.

 HTTP(S) communication for Integration Server-Universal Messaging should only be used when

firewalls are involved.

 In the event of Universal Messaging clustering, a dedicated inter-ream communication interface is

preferred.

 Administration interface should also be separated from client - UM communication.

 To have a dedicated interface for communication between client-UM and communication between

cluster nodes(inter-realm communication), see the following guidelines:

o Check "Allow for Inter-Realm", "Enable NIO"

o Uncheck "Advertise Interface", "Allow Client Communications"

o Client-UM communication

o Check "Advertise Interface", "Allow Client Communications", "Enable NIO"

o Uncheck "Allow for Inter-Realm"

o Admin Interface communication

o Check "Allow Client Connections" , "Enable NIO"

o Uncheck "Allow for Inter-Realm", "Advertise Interface"

8.1. Universal Messaging and SSL

For inter-realm communication, do not enable cert validation because all inter-realm communication goes

through "Deffi-Hellman" key exchange at connection creation. For Universal Messaging clients, we

recommend enabling certificate validation to use SSL. Unselecting the "Enable Cert Validation" option

makes the Universal Messaging clients to not require SSL certificates when connecting to Universal

Messaging server instances.

Software AG products Tuning Guidelines for Performance 6/7/2017

ABOUT SOFTWARE AG

Software AG offers the world’s first Digital Business Platform. Recognized as a leader by the industry’s top analyst firms, Software AG helps you combine existing systems on
premises and in the cloud into a single platform to optimize your business and delight your customers. With Software AG, you can rapidly build and deploy Digital Business
Applications to exploit real-time market opportunities. Get maximum value from big data, make better decisions with streaming analytics, achieve more with the Internet of
Things, and respond faster to shifting regulations and threats with intelligent governance, risk and compliance. The world’s top brands trust Software AG to help them rapidly
innovate, differentiate and win in the digital world. Learn more at www.SoftwareAG.com.

© 2015 Software AG. All rights reserved. Software AG and all Software AG products are either trademarks or registered trademarks of Software AG. Other product and
company names mentioned herein may be the trademarks of their respective owners.

http://www.softwareag.com/

